Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Anal Biochem ; 641: 114565, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1632512

ABSTRACT

Polymerase chain reaction (PCR) is the most widely used method for nucleic acids amplification. To date, a huge number of versatile PCR techniques have been developed. One of the relevant goals is to shorten PCR duration, which can be achieved in several ways. Here, we report on the results regarding nucleic acids amplification by convective PCR (cPCR) in standard 0.2 ml polypropylene microtubes. The following conditions were found to be optimal for such amplification: 1) 70 µl reaction volume, 2) the supply of external temperature 145°Ð¡ for the denaturation zone and 0°Ð¡ for the annealing zone, 3) ∼30° inclination of the microtube main axis, 4) the use of nearby primers, and 5) duration of the reaction 15-20 min. At these conditions, the amplification products are accumulated in an amount sufficient to be registered by gel electrophoresis, and high sensitivity of the reaction comparable to that of conventional PCR is achieved. cPCR provided the reliable detection of SARS-CoV-2 coronavirus RNA isolated from nasopharyngeal swabs of COVID-19 patients.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Polymerase Chain Reaction/instrumentation , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/methods , Convection , Humans , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Temperature , Time Factors
2.
Sci Rep ; 11(1): 21460, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500518

ABSTRACT

Population screening played a substantial role in safely reopening the economy and avoiding new outbreaks of COVID-19. PCR-based pooled screening makes it possible to test the population with limited resources by pooling multiple individual samples. Our study compared different population-wide screening methods as transmission-mitigating interventions, including pooled PCR, individual PCR, and antigen screening. Incorporating testing-isolation process and individual-level viral load trajectories into an epidemic model, we further studied the impacts of testing-isolation on test sensitivities. Results show that the testing-isolation process could maintain a stable test sensitivity during the outbreak by removing most infected individuals, especially during the epidemic decline. Moreover, we compared the efficiency, accuracy, and cost of different screening methods during the pandemic. Our results show that PCR-based pooled screening is cost-effective in reversing the pandemic at low prevalence. When the prevalence is high, PCR-based pooled screening may not stop the outbreak. In contrast, antigen screening with sufficient frequency could reverse the epidemic, despite the high cost and the large numbers of false positives in the screening process.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , SARS-CoV-2/genetics , Antigens, Viral/genetics , Antigens, Viral/metabolism , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , False Negative Reactions , False Positive Reactions , Humans , Pandemics , Polymerase Chain Reaction/economics , Reproducibility of Results , SARS-CoV-2/isolation & purification , Viral Load
3.
J Mol Diagn ; 23(10): 1207-1217, 2021 10.
Article in English | MEDLINE | ID: covidwho-1428187

ABSTRACT

The coronavirus disease 2019 (COVID-19) response necessitated innovations and a series of regulatory deviations that also affected laboratory-developed tests (LDTs). To examine real-world consequences and specify regulatory paradigm shifts, legislative proposals were aligned on a common timeline with Emergency Use Authorization (EUA) of LDTs and the US Food and Drug Administration (FDA)-orchestrated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) labeling update study. The initial EUA adoption by LDT developers shows that the FDA can have oversight over LDTs. We used efficiency-corrected microcosting of our EUA PCR assay to estimate the national cost of the labeling update study to $0.3 to $1.4 million US dollars. Labeling update study performance data showed lower average detection limits in commercial in vitro diagnostic (IVD) assays versus LDTs (32,000 ± 75,000 versus 71,000 ± 147,000 nucleic acid amplification tests/mL; P = 0.04); however, comparison also shows that FDA review of IVD assays and LDTs did not prevent differences between initial and labeling update performance (IVD assay, P < 0.0001; LDT, P = 0.003). The regulatory shifts re-emphasized that both commercial tests and LDTs rely heavily on laboratory competence and procedures; however, lack of performance data on authorized tests, when clinically implemented, precludes assessment of the benefit related to regulatory review. Temporary regulatory deviations during the pandemic and regulatory science tools (ie, reference material) have generated valuable real-world evidence to inform pending legislation regarding LDT regulation.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Polymerase Chain Reaction/methods , United States Food and Drug Administration/legislation & jurisprudence , COVID-19 Nucleic Acid Testing/economics , Humans , Laboratories/statistics & numerical data , Limit of Detection , Polymerase Chain Reaction/economics , Time Factors , United States
4.
Viruses ; 13(3)2021 03 11.
Article in English | MEDLINE | ID: covidwho-1124954

ABSTRACT

Control strategies that employ real time polymerase chain reaction (RT-PCR) tests for the diagnosis and surveillance of COVID-19 epidemic are inefficient in fighting the epidemic due to high cost, delays in obtaining results, and the need of specialized personnel and equipment for laboratory processing. Cheaper and faster alternatives, such as antigen and paper-strip tests, have been proposed. They return results rapidly, but have lower sensitivity thresholds for detecting virus. To quantify the effects of the tradeoffs between sensitivity, cost, testing frequency, and delay in test return on the overall course of an outbreak, we built a multi-scale immuno-epidemiological model that connects the virus profile of infected individuals with transmission and testing at the population level. We investigated various randomized testing strategies and found that, for fixed testing capacity, lower sensitivity tests with shorter return delays slightly flatten the daily incidence curve and delay the time to the peak daily incidence. However, compared with RT-PCR testing, they do not always reduce the cumulative case count at half a year into the outbreak. When testing frequency is increased to account for the lower cost of less sensitive tests, we observe a large reduction in cumulative case counts, from 55.4% to as low as 1.22% half a year into the outbreak. The improvement is preserved even when the testing budget is reduced by one half or one third. Our results predict that surveillance testing that employs low-sensitivity tests at high frequency is an effective tool for epidemic control.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , COVID-19 Testing/economics , COVID-19 Testing/methods , Epidemics , False Negative Reactions , Humans , Models, Theoretical , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sensitivity and Specificity
5.
BMC Infect Dis ; 20(1): 783, 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-883564

ABSTRACT

BACKGROUND: A cost effective and efficient diagnostic tool for COVID-19 as near to the point of care (PoC) as possible would be a game changer in the current pandemic. We tested reverse transcription loop mediated isothermal amplification (RT-LAMP), a method which can produce results in under 30 min, alongside standard methods in a real-life clinical setting. METHODS: This prospective service improvement project piloted an RT-LAMP method on nasal and pharyngeal swabs on 21 residents of a high dependency care home, with two index COVID-19 cases, and compared it to multiplex tandem reverse transcription polymerase chain reaction (RT-PCR). We recorded vital signs of patients to correlate clinical and laboratory information and calculated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of a single swab using RT-LAMP compared with the current standard, RT-PCR, as per Standards for Reporting Diagnostic Accuracy Studies (STARD) guidelines. RESULTS: The novel method accurately detected 8/10 RT-PCR positive cases and identified a further 3 positive cases. Eight further cases were negative using both methods. Using repeated RT-PCR as a "gold standard", the sensitivity and specificity of a single novel test were 80 and 73% respectively. PPV was 73% and NPV was 83%. Incorporating retesting of low signal RT-LAMP positives improved the specificity to 100%. We also speculate that hypothermia may be a significant early clinical sign of COVID-19. CONCLUSIONS: RT-LAMP testing for SARS-CoV-2 was found to be promising, fast and to work equivalently to RT-PCR methods. RT-LAMP has the potential to transform COVID-19 detection, bringing rapid and accurate testing to the PoC. RT-LAMP could be deployed in mobile community testing units, care homes and hospitals to detect disease early and prevent spread.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Point-of-Care Systems , Polymerase Chain Reaction/methods , Preliminary Data , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Coronavirus Infections/virology , Data Accuracy , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques/economics , Nucleic Acid Amplification Techniques/economics , Pandemics , Pneumonia, Viral/virology , Polymerase Chain Reaction/economics , Prospective Studies , SARS-CoV-2 , Sensitivity and Specificity
6.
PLoS One ; 15(8): e0237418, 2020.
Article in English | MEDLINE | ID: covidwho-713417

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has crudely demonstrated the need for massive and rapid diagnostics. By the first week of July, more than 10,000,000 positive cases of COVID-19 have been reported worldwide, although this number could be greatly underestimated. In the case of an epidemic emergency, the first line of response should be based on commercially available and validated resources. Here, we demonstrate the use of the miniPCR, a commercial compact and portable PCR device recently available on the market, in combination with a commercial well-plate reader as a diagnostic system for detecting genetic material of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19. We used the miniPCR to detect and amplify SARS-CoV-2 DNA sequences using the sets of initiators recommended by the World Health Organization (WHO) for targeting three different regions that encode for the N protein. Prior to amplification, samples were combined with a DNA intercalating reagent (i.e., EvaGreen Dye). Sample fluorescence after amplification was then read using a commercial 96-well plate reader. This straightforward method allows the detection and amplification of SARS-CoV-2 nucleic acids in the range of ~625 to 2×105 DNA copies. The accuracy and simplicity of this diagnostics strategy may provide a cost-efficient and reliable alternative for COVID-19 pandemic testing, particularly in underdeveloped regions where RT-QPCR instrument availability may be limited. The portability, ease of use, and reproducibility of the miniPCR makes it a reliable alternative for deployment in point-of-care SARS-CoV-2 detection efforts during pandemics.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Point-of-Care Systems , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Base Sequence , Betacoronavirus/chemistry , COVID-19 , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , DNA, Viral/genetics , Data Accuracy , Humans , Nucleocapsid Proteins/genetics , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , Polymerase Chain Reaction/economics , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL